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Abstract

Inviscid capillary pinchoff is studied numerically, for an axisymmetric model problem in which a bubble pinches at

two points on the symmetry plane, breaking into two symmetric end-bubbles and a satellite bubble in between. Results

are presented for a range of density jumps across the bubble. The numerical method uses a formulation in terms of

arclength and tangent angle, and incorporates a new procedure to redistribute the computational points dynamically, in

order to maintain resolution in regions of high curvature. The results are compared with alternative computations by

Lepinnen and Lister [Phys. Fluids 15 (2003) 568], where available. New results include details about the cone–crater

structure near pinchoff, and the dependence of satellite bubble volume and pinchoff time on the density ratio.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This work presents numerical simulations of surface tension driven collapse and pinchoff of a soap film

with subsequent satellite bubble formation. An experiment performed by Robinson and Steen [39] illus-

trates such a pinchoff process. In the experiment, an axisymmetric soap film is stretched between two

circular coaxial rings to which the film is pinned. If the separation distance between the rings is below a

critical value, the sleeve-like film is at equilibrium and takes on a catenoid shape. At a critical separation

distance, the catenoidal equilibrium shape becomes neutrally stable. By slowly increasing the separation
distance, the film suddenly becomes unstable and collapses. It pinches at two points on the symmetry axis,

leading to disconnection into three pieces: two endpieces that relax to planar disks spanning the end rings,

and a satellite bubble in between which eventually relaxes to a sphere. Understanding the pinchoff and

satellite bubble formation process is relevant to many engineering processes. For example, control of liquid

droplet size is crucial to many atomization processes (fuel combustion and fertilizer application) and to
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drop-on-demand technologies (inkjet printing and DNA arraying) [4,12]. Furthermore, features of the

topological change that occurs at pinchoff are shared by a range of forming processes [44]. While our ul-

timate goal is to accurately simulate the described experiment to better understand pinchoff, this paper
concerns an inviscid model problem.

Pinchoff is driven by surface tension, which can be resisted by either inertia or viscosity of the underlying

fluid. In both cases, arguments on dimensional grounds predict that the pinchoff is self-similar, but with

different scaling laws for the length scales near pinchoff. In practice, inviscid flow is an appropriate model

when surface tension is resisted primarily by fluid inertia. This can occur over decades of length scales,

reaching down to below themicron scale for water pinching in air, for example [4]. Thus, inviscid pinchoff is of

practical importance on its own. Observation is consistent with theoretical predictions of self-similarity [39].

There is a large literature devoted to the study of viscous and inviscid pinchoff. We now mention a few of
the numerous studies. Modern interest can be traced to the work of Keller and Miksis [24], who studied

how surface tension drives inviscid flow, starting from a wedge-shaped geometry, and found a global self-

similar solution for this 2D initial condition. Axisymmetric inviscid flows were then analyzed using a

slenderness assumption that leads to a one-dimensional model [23,25,34,46]. For an axisymmetric surface of

revolution xðsÞ ¼ ðrðsÞ; zðsÞÞ, where s is arclength, r is the radial coordinate and z is the symmetry axis,

pinchoff is driven by the principal curvatures

jz ¼ rszss � zsrss; jr ¼ zs=r; ð1:1Þ

through the Laplace–Young law (see Fig. 1). When viscosity is present, jr goes to infinity first and there is
self-consistency of the one-dimensional models [16,17,41]. However, the axisymmetric slenderness as-

sumption breaks down in inviscid flow, since jz grows large before jr [35]. In this case, overturning occurs

before pinchoff. Like the 2D-wedge geometry, self-similarity is expected but now both principal curvatures

are involved and a global self-similar solution is not possible. Experiments [36] and computations [28,43]

are consistent with overturning before pinchoff and later computations clearly capture the overturning and

subsequent self-similarity [13,15,27]. Analysis of the inviscid axisymmetric case remains of interest, both for

applications and to better understand the mathematical nature of the finite-time singularity represented by

pinchoff.
In this paper, we investigate inviscid axisymmetric pinchoff numerically. The soap film is modelled by a

surface tension driven vortex sheet: an infinitely thin surface separating regions of potential fluid, across

which the tangential velocity is discontinuous. Guided by Nie’s [30] work, we consider a model problem of

an initially spherical bubble that, at a critical time, pinches off at two points on the axis, disconnecting into
κ1/ r

κ1/ z

u2 2
ρ, , 2p

u1, p1
ρ1,

r

r

z

r

z

 or
s=0

s=L

 =0

 =

x
 (s,t)α
 (  ,t)α

α π

x

(a) (b)

Fig. 1. Sketch illustrating: (a) axisymmetric vortex sheet, (b) principal curvatures jr, jz.
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two symmetric end-bubbles and a satellite bubble in between, therefore resembling the pinchoff observed

experimentally. In the model, the densities inside and outside the bubble may differ and a range of possible

density jumps is considered. In the experiment, such a situation could be achieved by closing the endrings.
The present objectives are to develop an accurate and stable numerical method, and to use the results to

gain insight into the dynamics near pinchoff and its dependence on the density jump.

In the vortex sheet model, pinchoff corresponds to a finite-time singularity of the governing partial

differential equations in which the curvatures grow unbounded. Resolving the singularity requires resolving

many orders of length and timescales. This has been particularly difficult for vortex sheets with surface

tension. Early works, such as the ones by Pullin [37], Rangel and Siringano [38], Baker and Moore [2],

report difficulties with a numerical sawtooth instability which is suppressed using some form of ad-hoc

smoothing, for example by point repositioning. Beale et al. [5–7] and Baker and Nachbin [3], studied the
instability of spatial discretizations analytically and numerically, and proposed alternative stable methods.

These works show that numerical instability arises generically due to an incompatibility in the discretization

of the spatial derivatives and the singular integrals in the equation of motion.

In addition to the difficulty caused by numerical instability, surface tension introduces stiffness into the

equations nonlinearly, through a product of high derivatives that contributes nonlocally to the vortex sheet

motion. As a result, explicit schemes require a stringent timestep relative to the spatial discretization. For

the vortex sheet problem considered here, the constraint is that Dt6CDs3=2min, where Dsmin is the smallest

distance between points. This restriction can be removed using implicit schemes, although at a high
computational cost in view of the nonlinearity. Much progress in resolving this issue came with the work of

Hou et al. [19] (henceforth HLS, see also review paper [21]). Following previous researchers [18,22,29,45],

they used a formulation based on the relative spacing between points sa and the tangent angle h, instead of

the more standard formulation based on Cartesian coordinates x and y. This enabled them to determine the

dominant term at small spatial scales responsible for stiffness, which turns out to be nonlocal, but linear.

For periodic problems on a uniform mesh it diagonalizes under the Fourier Transform, which makes it

possible to treat it implicitly at no additional cost, and thereby remove the stiffness constraint on the

timestep. This approach, called the small scale decomposition, has been successfully implemented to resolve
planar and axisymmetric vortex sheet evolution with surface tension, both for inertial sheets (HLS, [20,30])

and flows driven by Darcy’s law (HLS, [10,11]). Ceniceros and Hou [9] show that the resulting semi-implicit

scheme yields convergent results, as long as numerical filtering is carefully applied to insure stability. The

above referenced papers use a Fourier filter. Unfortunately, the small scale decomposition does not trivially

extend to nonperiodic problems and becomes computationally expensive for nonuniform meshes [20].

For axisymmetric vortex sheets there is an additional difficulty in accurately computing the vortex sheet

velocity near the axis of symmetry [14]. The problem stems from singular behaviour of the integrands

describing the velocity at points approaching the axis of symmetry. The integrands develop unbounded
derivatives at the endpoints of the interval of integration, leading to loss of accuracy in their numerical

evaluation [1,32]. This problem has been addressed both by Nie and Baker [31] using local mesh refinement,

and by Nitsche [32] using asymptotic approximations of the relevant integrands, and both of these methods

have been successfully implemented [11,30,33]. In this paper, we compute the axisymmetric sheet velocity

using the latter approach.

The numerical works most closely related to the present one are by Nie [30] (henceforth Nie) and Le-

pinnen and Lister [27] (henceforth LL). Nie uses the small scale decomposition on a uniform mesh to

compute planar and axisymmetric vortex sheet evolution, for the case of zero density jump across the sheet.
He considers two initial conditions, one symmetric and one asymmetric about the plane z ¼ 0, and studies

the effect of the surface tension parameter. He finds that for small surface tension, the sheet pinches at a

point away from the axis, for large surface tension it does not pinch at all, and for intermediate values, the

symmetric sheet pinches at two points on the axis, leading to disconnection similar to the one observed in

experiment. Nie refines the mesh by doubling the number of meshpoints a few times as pinchoff is
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approached, but the constraint to uniform grid spacing precludes full resolution of the disconnection

process. LL compute the evolution from a different initial condition for a range of density jumps. They use

an alternative computational method based on a formulation in cylindrical coordinates and the vortex
dipole strength, and do not include any numerical filters. Local mesh refinement is obtained by reposi-

tioning the computational meshpoints at each timestep along quintic spline interpolants, so that the local

grid spacing remains proportional to the distance of each grid point from the point of minimum radius that

develops near pinchoff. Using this method, LL resolve the space-time neighbourhood of pinchoff and report

self-similar behaviour as pinchoff is approached. They also solve steady equations in self-similar coordi-

nates to obtain the self-similar shapes for a range of density jumps.

Here, we resolve vortex sheet pinchoff for the initial condition found by Nie to yield results similar to

experimental observation. The numerical method is based on the sa–h formulation. Since the small scale
decomposition is too computationally expensive for nonuniform meshes, it is not applied here, and

therefore Dt6CDs3=2min is required. However, this constraint proves not to be too costly and high resolution

results can be obtained. A main contribution of this work is to introduce a new method to redistribute the

computational meshpoints dynamically, so that they cluster at a desired point, in our case in the region of

high curvature. This is achieved by imposing an evolution equation for the relative spacing between points,

sa, whose minimum value and position change in time. The minimum position moves continuously with the

region of high curvature and the minimum value decreases in time to a prescribed value. Numerical tests

confirm that this mesh refinement technique does not introduce artifacts near pinchoff and that the results
converge as the number of meshpoints increases. The present results are compared to results by LL,

showing agreement in the self-similar structures near pinchoff and in the tongues that develop for large

Atwood number. New results include details about the cone–crater structure near pinchoff, and the de-

pendence of satellite bubble volume and pinchoff time on the density jump.

The paper is organized as follows. Section 2 presents the governing equations, including the evolution

equation for sa used for mesh refinement. Section 3 describes the numerical method used to solve the

governing equations. Section 4 presents the numerical results for a range of density jumps. The main results

are summarized in Section 5.
2. Problem formulation

2.1. Governing equations

Vortex sheet evolution is governed by the boundary integral formulation introduced in Baker et al. [1].

That paper and the one by Shelley and Vinson [42] present two alternative derivations for the case of zero
surface tension, with nonzero density jump across the sheet. Here, we choose to treat the nonzero surface

tension case following the steps in [42].

The sheet is described by a curve in the symmetry plane, xða; tÞ ¼ ðrða; tÞ; zða; tÞÞ, a 2 ½0; p�, where the z-
axis is the symmetry axis, r is the radial direction, and a is a Lagrangian parameter that remains constant on

computational particles. In the case considered in this work, the sheet is closed and separates interior fluid

from exterior fluid. The fluid is described by its velocity u1;2, pressure p1;2 and density q1;2, where subscripts 1

and 2 refer to the inner and outer fluid, respectively, see Fig. 1(a). The arrows shown in the figure indicate

the direction of increasing a. The fluid velocity on either side satisfies the incompressible Euler equations
with the following boundary conditions:

½u� � n ¼ 0 ðkinematic boundary conditionÞ; ð2:1aÞ
½p� ¼ sj; s > 0 ðLaplace–Young conditionÞ; ð2:1bÞ
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uj ! 0 as r2 þ z2 ! 1; j ¼ 1; 2 ðvanishing far-field velocityÞ; ð2:1cÞ

where ½f � ¼ f1 � f2, and f1, f2 are the limiting values from inside and outside the bubble, n is the outward

normal unit vector and j is the median curvature

j ¼ jr þ jz

2
: ð2:2Þ

The components jz and jr, given by (1.1), are the principal curvatures of the surface in a cross-section with

the r–z plane and a plane normal to it, respectively, with magnitude as indicated in Fig. 1(b).

The kinematic boundary condition states that the normal velocity component is continuous across the

sheet. The tangential component may be discontinuous. The vortex sheet strength measures the tangential

velocity jump across the sheet and is defined as

cðaÞ ¼ �½u� � s ¼ ðu2 � u1Þ � s; ð2:3Þ

where s ¼ hra; zai=sa is the unit tangent vector and sa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a þ z2a

p
measures changes in arclength relative to

changes in the parameter a. Concerning the notation, here and throughout this paper subscripts s, a or t
denote differentiation with respect to those variables. (Other subscripts, such as r or z, do not denote

differentiation.)

The Laplace–Young condition specifies the jump in pressure across the sheet as a function of curvature.

Here, we assume that the surface tension s > 0 is constant across the sheet. The sign of the pressure jump is

such that for a sphere, the pressure is larger in the interior.

The third condition together with the Biot–Savart law and the Plemelj formulae implies that the average

of the velocities on either side of the interface is

dx

dt

� �
av

¼ u1 þ u2

2
¼ Wða; tÞ ¼ 1

r
PV

Z p

0

ow
o~r

;

�
� ow

o~z

�
cð~aÞd~a; ð2:4aÞ

where

wðr; z;~r;~zÞ ¼ r~r
4p

Z 2p

0

cos h
q

dh; ð2:4bÞ

q2 ¼ ðz� z0Þ2 þ r2 þ r02 � 2rr0 cos h, ðr; zÞ ¼ ðrða; tÞ; zða; tÞÞ, ð~r;~zÞ ¼ ðrð~a; tÞ; zð~a; tÞÞ, and PV denotes the

principal value of the integral. Thus,

u1 ¼ W� c
2
s; u2 ¼ Wþ c

2
s: ð2:5Þ

Note that in practice, the integrands in (2.4a) are rewritten and evaluated in terms of elliptic integrals (e.g.,

see [32,33] for details).

The vortex sheet motion is independent of its tangential velocity component. Therefore, the vortex sheet

velocity can be defined to be

dx

dt
¼ dr

dt
;
dz
dt

� �
¼ u ¼ Wþ T s; ð2:6Þ

where T is arbitrary. As suggested by HLS, we will choose T to control the clustering of numerical particles

along the interface.

Eq. (2.6) gives evolution equations for the cylindrical variables r and z. The evolution equation for the

remaining independent variable, c, can be obtained from the Euler equations on either side of the interface,

written in a frame moving with velocity u:
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q1

ou1

ot
þ q1½ðu1 � uÞ � r�u1 þrp1 ¼ 0; ð2:7aÞ
q2

ou2

ot
þ q2½ðu2 � uÞ � r�u2 þrp2 ¼ 0; ð2:7bÞ

where body forces have been neglected and the gradient is taken with respect to the new variable

nða; tÞ ¼ xða; tÞ �
R t
0
uða;~tÞd~t. The convective term in (2.7) follows from the fact that in the limit from within

the bubble, ðdx=dtÞ ¼ u1 and

d

dt
¼ o

ot
þ dni

dt
o

oni
¼ o

ot
þ dxi

dt

�
� ui

�
o

oni
¼ o

ot
þ dx

dt

�
� u

�
� rn ¼

o

ot
þ ðu1 � uÞ � rn

and similarly outside the bubble. Following the steps outlined by Shelley and Vinson [42], one can show

that under the assumption that q1;2 are constant, the difference between equations (2.7a) and (2.7b) is

equivalent to

oc
ot

þ cWs � sð � T csÞ ¼ �2A
oW

ot
� s

�
� TWs � sþ

1

8
ðc2Þs

�
þ sjs

qav

; ð2:8Þ

where A ¼ ðq2 � q1Þ=ðq2 þ q1Þ is the Atwood number and qav ¼ ðq1 þ q2Þ=2. This is the evolution equation

for c. The governing equations therefore are (2.6) and (2.8) for the variables r; z; c. The initial condition of

interest here is the spherical sheet

rða; 0Þ ¼ cosðaÞ; zða; 0Þ ¼ sinðaÞ; cða; 0Þ ¼ 2 sin 2a; a 2 ½0; p�; ð2:9Þ

with surface tension parameter s=qav ¼ 0:2. These are the conditions for which Nie obtained results

similar as observed in experiment. Note that the surface tension value is dimensional, and is not in

the small surface tension regime, but is one of the intermediate surface tension values studied by

Nie.

2.2. Alternative formulation

The first works regarding interfacial flow with surface tension studied numerical solutions to equations
formulated in Cartesian or cylindrical coordinates, such as (2.6) and (2.8), and found that the discretiza-

tions are unstable (e.g., [2,37,38]). Later Beale et al. [5,6] and Baker and Nachbin [3] showed that the in-

stability arises generically due to an incompatibility in the discretization of the spatial derivatives and the

singular integrals in the equation of motion.

The governing equations can alternatively be reformulated as proposed in HLS, by replacing the in-

dependent variables r; z; c by the relative spacing between points sa, the tangent angle h, and a scaled vortex

sheet strength ~c, where

~c ¼ csa: ð2:10Þ

New variables eU ; eT are also introduced, defined by

xt ¼ eU nþ eT s; ð2:11Þ

where n ¼ h�za; rai=sa is a unit vector normal to the sheet and s is as before the unit tangent vector. It

follows that eU ¼ W � n and eT ¼ W � sþ T . One can now show that (2.6) and (2.8) is equivalent to

sa;t ¼ eTa � ha eU ; ð2:12aÞ
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ht ¼
1

sa
ð eUa þ eT haÞ; ð2:12bÞ
~ct ¼ ðeT" �W � sÞ ~c
sa

#
a

� 2A saWt � s

24 þ 1

8

~c
sa

 !2
0@ 1A

a

� ðeT �W � sÞWa � s

35þ ~sja; ð2:12cÞ

where j ¼ hs and ~s ¼ s=qav is a normalized surface tension. For the derivation of equations (2.12a) and

(2.12b), see HLS. Eq. (2.12c) is equivalent to (2.8), after noting that sa;t ¼ Wa � sþ Ta, which follows from

the definition of sa. In these variables, the initial condition (2.9) is

saða; 0Þ ¼ 1; hða; 0Þ ¼ a; ~cða; 0Þ ¼ 2 sinð2aÞ: ð2:13Þ

Ceniceros and Hou [9] showed that just as in the Cartesian variables, discretizations using the sa–h
formulation need to preserve a delicate balance among the most singular terms to ensure stability. Together
with careful filtering and the small scale decomposition of HLS, Hou et al. [19,20] and Nie solved (2.12) and

successfully resolved the vortex sheet motion.

2.3. Mesh refinement

Vortex sheet motion is most commonly computed by moving the computational particles with the

average velocity W, that is, by setting T ¼ 0, or equivalently, eT ¼ W � s. That is not practical in the

present case. To illustrate, Fig. 2 plots the position at t ¼ 1:7 of particles initially uniformly distributed
on the sphere (2.13) that have evolved with the average velocity using the method described in the next

section. Fig. 2(a) plots a linear interpolant of the particles, showing that a region of high curvature has

developed. Fig. 2(b) plots a closeup of the particles position, showing that in this case the high cur-

vature region is underresolved since the particles do not cluster there, but at a nearby inflection point

instead.

Several approaches have been taken to better resolve the region of high curvature. HLS choose eT so that

the particles remain uniformly spaced at all times. Nie uses this uniform mesh, but doubles the total number

of particles a few times as the curvature increases, by placing new particles on spline interpolants of the
existing ones, thus refining the mesh uniformly as the curvature increases. In LL, local mesh refinement is
(a) (b)

Fig. 2. Particle position at t ¼ 1:7, computed using average velocity frame eT ¼ W � s, with 100 initially uniformly spaced points, for

A ¼ 0. (a) Linear interpolant of computational meshpoints. (b) Closeup showing meshpoint position.
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achieved by repositioning the existing particles on a quintic interpolant at every time step so that the local

grid spacing remains proportional to the distance of the particles to the point of minimal radius in the high

curvature region.
The method chosen here is closest to an alternative proposed by HLS. They suggest to obtain local mesh

refinement by specifying eT so that the relative spacing between particles is sa ¼ RðaÞLðtÞ, where L is the

length of the curve and R has a minimum at a desired value of a. This approach, used in [20], implies that:

(1) the particles cluster at a fixed position ac at all times and (2) the amount of refinement is fixed in time.

However, in the problem considered here the position of largest curvature moves in time, and the region of

local refinement should ideally move with it. One would also like the points to be initially uniformly dis-

tributed and the amount of local refinement to increase as the curvature increases. To accomplish this, we

set

sa ¼ f ða; tÞ; ð2:14Þ

where f > 0 is specified dynamically to be smallest at the point where pinchoff develops, with decreasing

minimum value, corresponding to increasing local refinement in time. The function f needs to satisfy the

constraintZ p

0

f da ¼
Z p

0

sa da ¼ LðtÞ: ð2:15Þ

Once f is specified, eT ða; tÞ is determined from sa;t ¼ ftða; tÞ ¼ eTa � ha eU to be

eT ða; tÞ ¼ eT ð0Þ þ Z a

0

ft þ ha eU da0; ð2:16Þ

where we choose eT ð0Þ ¼ 0. Note that in view of the symmetry of the initial conditions (2.13), sa; ha;~c, and
therefore W and eU , are periodic with period p. To ensure that they remain so, eT needs to be periodic as

well. This is achieved by enforcing that f is periodic withZ p

0

ft da ¼ �
Z p

0

ha eU da: ð2:17Þ

In summary, dynamic mesh refinement is obtained by solving (2.12) with eT as given in (2.16). The explicit

formula we chose for f is presented in the next section. This mesh refinement formulation agrees with the
one given by HLS when sa ¼ cðtÞ (uniformly spaced points) and sa ¼ RðaÞLðtÞ (fixed amount and position

of refinement).
3. Numerical method

The numerical method consists of solving a discrete approximation to (2.12) and (2.16). It differs from

the method used by Nie, introduced by HLS, in that it includes dynamic mesh refinement and does not
incorporate the small scale decomposition, which is costly for nonuniform meshes. It differs from the

method used by LL in that it uses the sa–h formulation instead of one in cylindrical coordinates and uses a

different method for local mesh refinement.

3.1. Discretization and initial condition

The vortex sheet is discretized by N þ 1 points uniformly spaced in the Lagrangian variable a, with
values
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sa;jðtÞ ¼ saðaj; tÞ; hjðtÞ ¼ hðaj; tÞ; ~cjðtÞ ¼ ~cðaj; tÞ; ð3:1Þ
where aj ¼ jp=N ; j ¼ 0; . . . ;N , and sa;jð0Þ ¼ 1; hjð0Þ ¼ aj; ~cjð0Þ ¼ 2 sinð2ajÞ:

3.2. Time integration

The discrete values are updated in time by solving (2.12) at the meshpoints using the fourth-order

Runge–Kutta method. The method is stable as long as

Dt6CDs3=2min; ð3:2Þ

where C ¼ 2:5 was found to be sufficiently small for stability. As noted earlier, the stiffness constraint (3.2)
can be eliminated using the small scale decomposition proposed by HLS, but at a high computational

expense if the mesh is nonuniform [20]. Furthermore, we reproduced some of Nie’s simulations, which were

computed with the small scale decomposition, using the present scheme without the decomposition, and

found that the timestep required for stability here is the same as the final timestep required by Nie. This is

consistent with results by Ceniceros and Hou [9], who examined a spatial and temporal discretization for a

simple case and showed that the stability constraint of semi-implicit methods such as the one by HLS is

linked to the curvature and regularity of the solution. Thus, for interfaces developing large curvatures the

time step of the semi-implicit method must also be small, as the computations of Nie show. For these types
of problems the explicit boundary integral methods may therefore be at least competitive with the implicit

discretizations. We choose the explicit method, keeping the constraint (3.2), and gain accuracy using mesh

refinement.

To approximate the right-hand side in (2.12), the following components are needed at each stage of the

Runge–Kutta method:

(i) Computing all spatial derivatives and integrals. All spatial derivatives needed (as in the right-hand

side of (2.12)) are computed using fourth-order centered finite differences, where the periodic extension

about r ¼ 0 is used to obtain fourth-order approximations at endpoints. All integrals (as in (2.15) and
(2.16), and in (ii)–(iv) below) are evaluated to fourth-order accuracy using the trapezoid rule with a

correction given by the first term in the Euler–McLaurin series for the error. The correction is given in

terms of derivatives of the integrands at the endpoints, which are evaluated to at least second order

using finite differences.

(ii) Computing the velocity W. To compute W one first needs to recover r; z from sa; h. This is done by

integrating

ra ¼ sa cos h; za ¼ sa sin h ð3:3Þ

as explained in (i).
The principal value integrals in (2.4a) are computed using the fifth-order quadrature rule described in

Nitsche [33]. This quadrature rule is uniformly accurate for all points, and removes the loss of resolution

previously observed near the axis of symmetry (also see [1,14,31,32]).

(iii) Computing sa;t ¼ ft and eT . The function sa;t ¼ ft is determined so that the relative spacing between

points sa ¼ f gives the desired point distribution. To satisfy condition (2.15), we write f ¼ Rða; tÞLðtÞ whereR p
0
Rda ¼ 1 and L is the length of the curve. The function Rða; tÞ is chosen to be initially constant in a, and

later develop a minimum near the points leading to pinchoff. Because of symmetry, there are two such

points at a ¼ ac; p� ac. The values for ac, computed dynamically during the simulation, should evolve
continuously in time towards pinchoff. Two definitions of ac that satisfied this condition were used: either

the value at which the tangential velocity W � s attains a minimum (used for A6 0:6), or the value at which
h ¼ 3p=2 near the point of minimal radius, once it has established (used for A ¼ 0:7). Both of these
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definitions coincide at later times with the point of maximal curvature. The point of maximal curvature was

not a good parameter since its position jumps discontinuously at early times.

The guidelines taken to choose Rða; tÞ are: R should be a positive function that depends on a parameter �
so that when � ¼ 0 the function is constant (corresponding to a uniform mesh) and for 0 < � < 1 it has two

symmetric minima at ac; p� ac, with decreasing minimum value as � increases. Furthermore, to preserve the

periodicity of all variables, R needs to be periodic as well. The function

gðxÞ ¼ 1:125þ �ðcosð4xÞ � cosð2xÞÞ; where x ¼ p
sðaÞ
L

�
� 0:5

�
; ð3:4Þ

shown in Fig. 3(a), satisfies many of these conditions. It is periodic, it is constant if � ¼ 0 and it has a

positive minimum of 1:125ð1� �Þ at two symmetric points if 0 < � < 1. However, the minima occur at fixed

points �x0, x0 ¼ cos�1ð0:25Þ=2. Since we wish to specify the position of the minima arbitrarily to be at sðacÞ,
p� sðacÞ, we need to compose gðxÞ with a monotonically increasing function pðxÞ that maps

xmin ¼ pðsðacÞ=L� 0:5Þ to �x0 and p� xmin to x0. To preserve the periodicity of gðxÞ, it is necessary that

pð�p=2Þ ¼ �p=2 and that the derivative p0ðxÞ and all higher derivatives be periodic. The function

pðxÞ ¼ tan�1ðb tan xÞ; b ¼ tanð�x0Þ= tanðxminÞ ð3:5Þ

satisfies all these requirements. It is plotted in Fig. 3(b) for a range of values xmin corresponding to

0:16 sðacÞ=L6 0:45. The points ðxmin;�x0Þ; ðp� xmin; x0Þ are indicated by a cross. Finally, since R is to have

integral 1, the resulting composition gðpÞ is divided by its total integral. While other choices are surely
possible, the formula for R that we used as a result of these considerations is

Rða; tÞ ¼ gðpÞR p
0
gðpÞda

ð3:6Þ

shown in Fig. 3(c), for the same range of values xmin as in Fig. 3(b). The arclength parameter sðaÞ needed to
compute g is obtained by integrating sa to fourth order, as described in (i).

The parameter � (see (3.4)) measures the deviation of R from the constant; � ¼ 0 corresponds to constant

R and thus to uniformly distributed points, � ¼ 1 corresponds to a function R with zero minimum value. We

choose � to increase linearly from 0 to some maximum value �max just below 1, attained at t ¼ tc,

� ¼ �max

t
tc
; ð3:7Þ
x

g

(a)

- π/2 π/2
- π/2

π/2

x

p

(b)

- π/2 π/2
- π/2

π/2

s/L

R

(c)

0                                                 1
0

4

Fig. 3. Construction of Rða; tÞ, for � ¼ 0:9 and a range of values 0:16 sðacÞ=L6 0:45. (a) The function gðxÞ. (b) The function pðxÞ
mapping xmin ¼ pðsðacÞ=L� 0:5Þ to x0. The points ðxmin; x0Þ are marked by an ‘x’. (c) Normalized composition R vs. arclength s=L.
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where tc and �max are user specified parameters. The parameter tc is typically chosen to be a value slightly

larger than the estimated pinchoff time tp, so that always � < 1. The parameter 06 �max < 1 determines the

amount of final mesh refinement, with no mesh refinement if �max ¼ 0 and increasing refinement as
�max ! 1.

Once R is specified, the derivative ft is computed from

ft ¼ RtLþ RLt; where Lt ¼ �
Z p

0

ha eU da: ð3:8Þ

This equation ensures that condition (2.17) is satisfied. Rt is approximated with first-order finite differences

using the value of R at the previous timestep. The accuracy in evaluating Rt has essentially no effect on the

overall accuracy of the method and solely affects the position of the points, which satisfies sa � f at all

times. Once ft is determined, eT is determined from (2.16).

(iv) Computing ~ct for A 6¼ 0. For A 6¼ 0, Eq. (2.12c) is a Fredholm integral equation for ~ct, since

Wt ¼ ðd=dtÞ
R
G~c ¼

R
Gt~cþ

R
G~ct depends on ~ct. The quantity Gt is approximated numerically and the

resulting equation is

~ct ¼
Z

G~ct daþ rhs; ð3:9Þ

where rhs is independent of ~ct, is solved using GMRES [40].
3.3. Filtering

The vortex sheet is subject to the Kelvin–Helmholtz instability. In the absence of surface tension, high

wave number Fourier modes introduced by roundoff error at the level of machine precision grow expo-

nentially fast. This problem is usually avoided using a Fourier filter introduced by Krasny [26]. Surface
tension damps the growth of high wavenumber modes. The present computations were performed with 14

digits of precision and normalized surface tension s=qav ¼ ~s ¼ 0:2, and this amount of surface tension was

found to damp errors at the level of machine precision in most cases without requiring filtering.

However, another source of roundoff error much larger than machine precision occurs when computing

derivatives of jr, needed in (2.12c), near points on the axis, s ¼ 0; L. Near these points, jr (see Eq. (1.1)) is a

quotient of two numbers that vanish as r ! 0. Computing the derivative of this quotient introduces large

noise that grows under the Kelvin–Helmholtz or the sawtooth instability of the sheet. The noise, created at

the endpoints, travels into the interior of the domain and contaminates the solution. Several approaches are
considered to prevent this.

(i) Krasny’s Fourier filter. One possibility is to apply Krasny’s Fourier filter, in which the noise is

smoothed by removing all Fourier modes in the solution below a certain filter level at each timestep. The

chosen filter level here was 10�11 or smaller. However, this filter level was not always sufficient to eliminate

the errors introduced at the endpoints.

(ii) Viscosity near endpoints. Another possibility is to add a small amount of viscosity to a region near the

boundary. We chose to replace js by js þ mDjs in a small region near the endpoints, where m varies con-

tinuously from 0 (in inner boundary of region) to a value mmax (at endpoints), where 0:00016 mmax 6 0:001.
(iii) Alternative computation of jr;s near endpoints. A third possibility is to use the fact that near s ¼ 0,

and similarly near s ¼ L, derivatives of jr can be expressed in terms of derivatives of jz, using the relation

jr;sðsÞ ¼ jz;sðsÞ=3þOðs3Þ ð3:10Þ

proven in Appendix A. Since jz;s can be computed accurately near the axis, this relation enables one to

smoothly approximate jr;s near the axis. We choose to approximate
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jr;sðsÞ � bðsÞjr;sðsÞ þ ð1� bðsÞÞjz;sðsÞ=3; ð3:11Þ

where bðsÞ is an odd, twice continuously differentiable function with bðsÞ ¼ 1 if s > 0:1, bð0Þ ¼ 0, and given

by a seventh-order polynomial for 0 < s < 0:1.
None of these three approaches by themselves was successful in all cases, although each was successful

by themselves in some cases. The Fourier filter with level 6 10�11 was applied to all cases A6 0. For A > 0,
either the second or third approach was used, either individually or in addition to the Fourier filter. The

results reported here are independent of which of these methods was used, as long as the method used was

successful in removing the noise introduced at the endpoints. We note that the difficulty requiring some

form of filter is attributed primarily to errors introduced at the axis and is not expected to occur if these

errors are absent (for example, in planar flow or if the sheet does not touch the axis).
4. Numerical results

4.1. Evolution for A ¼ 0

Fig. 4 plots the solution ðrða; tÞ; zða; tÞÞ; a 2 ½0; p�, at the indicated times, for the equal density case A ¼ 0

computed with N ¼ 4000, �max ¼ 0:99. The image ð�rða; tÞ; zða; tÞÞ is also plotted, thus showing a cross-

section of the axisymmetric surface in the symmetry plane. As mentioned, the initial condition is the

spherical sheet (2.13) and the surface tension parameter is ~s ¼ s=qav ¼ 0:2. At t ¼ 1, the sheet has developed

a barbelled shape that preserves the initial symmetry about z ¼ 0. At t ¼ 1:7, two symmetric neck regions
have formed, one for z > 0 and one for z < 0, in which the radius has a local minimum. The minimum

radius, the half-width of the neck, decreases in time and shrinks to zero at a finite time tp slightly larger than
the last time shown, t ¼ 1:89518. As a result, the sheet pinches at two points, separating two symmetric

bubbles at the top and bottom from a satellite bubble in between. Notice that near the pinchoff point, the

top and bottom bubbles fold into themselves, forming a so-called crater, while the middle bubble takes the

shape of a cone. The resulting pinchoff structure is therefore referred to as a cone–crater structure. Also

note that near the pinchoff time (for example, at t ¼ 1:7), the curvature jz changes sign on both the crater
Fig. 4. Bubble interface for A ¼ 0 at the indicated times, computed with N ¼ 4000, �max ¼ 0:99.
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and the cone branch, leading to one inflection point on each branch. The evolution of these inflection points

as pinchoff is approached will be addressed later.

A closeup of the evolution towards pinchoff is illustrated in Fig. 5, which plots the solution at a sequence
of times t 2 ½1:88; 1:89518�. It shows the minimum radius decreasing to zero, and the position of the neck

approaching a limit point ð0; z0Þ on the z-axis. At the pinchoff time, the curvature at the point of minimal

radius is unbounded and cannot be resolved. The last time plotted here is the last time at which the solution

remains resolved.

Fig. 6 plots the corresponding evolution of the variables sa, h, c, and of the associated curvatures jz, jr,

at the indicated times, as functions of s=L. Here s is the arclength parameter and L is the total length of the

curve ðrða; tÞ; zða; tÞÞ; a 2 ½0; p�. All functions are symmetric about s=L ¼ 0:5 because of the symmetry of the

problem about z ¼ 0. The figure shows the discrete values at the computational meshpoints for s=L < 0:5,
and an interpolating curve for s=L > 0:5.

The relative spacing between points sa, plotted in Fig. 6(a), is dynamically determined in the code by

specifying sa;t ¼ ft, as described in Section 3.2(ii). The figure shows that initially, sa is constant (equal to

L=p ¼ 1), corresponding to uniformly spaced points. At later times, sa develops a minimum at a point

which continuously evolves towards the pinchoff point. The minimum value decreases in time, corre-

sponding to continuous mesh refinement near this point. At the same time, the maximum value at

s=L ¼ 0; 1 increases, corresponding to mesh coarsening near the endpoints. The point distribution at the

final time t ¼ 1:89518 is indicated in Fig. 7, which, for clarity, plots the position of every 10th computa-
tional point only. At this time, the finest spacing between points is L=50; 000. For reference, the spacing

using a uniform mesh with the given value of N would have been L=4000.
The tangent angle h, plotted in Fig. 6(b), develops a jump at the pinchoff point, corresponding to a

corner in the vortex sheet. The discrete data shown for s=L < 0:5 indicates roughly the number of points

across the jump. Notice that on both sides of the jump the angle h attains a local extremum. These local

extrema correspond to the inflection points in the curve ðrða; tÞ; zða; tÞÞ mentioned earlier.
Fig. 5. Solution near pinchoff for A ¼ 0, N ¼ 4000, �max ¼ 0:99, at a sequence of times t 2 ½1:88; 189518�.
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Fig. 6. (a) Relative spacing sa, (b) tangent angle h, (c) vortex sheet strength c, (d,e) principal curvatures jz, jr, at the indicated times, vs

normalized arclength s=L, for A ¼ 0, N ¼ 4000, �max ¼ 0:99.
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The vortex sheet strength c, plotted in Fig. 6(c), is the jump in the tangential velocity component. We

note that other authors have plotted ~c ¼ csa, while we choose to plot c since it does not depend on the point

distribution. The figure shows that c becomes unbounded at pinchoff. At the final time plotted, the max-

imum sheet strength is cmax � 36.

Both the principal curvatures jz and jr, plotted in Figs. 6(d) and (e), also become unbounded at pinchoff.

At the last time shown, their absolute maxima are jjzjmax � 3100 and jjrjmax � 1580. As pinchoff is ap-
proached the maxima increase and resolution is lost, leading to noise in all variables. All the runs presented

in this paper are only shown for those times at which they are still resolved and no noise is visible.

4.2. Self-similar collapse, A ¼ 0

The inviscid pinchoff process is expected to be self-similar. Theoretical arguments based on balancing the

dynamic and capillary pressure terms under the assumption that r and z� z0 have comparable length scales

near pinchoff lead to the similarity scaling ([13,15], LL),



Fig. 7. Position of every 10th computational point ðrj; zjÞ, j ¼ 0:10:N at t ¼ 1:89518, for A ¼ 0, N ¼ 4000, �max ¼ 0:99.
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This scaling has been observed both in [13] for A ¼ 0 and in LL for A 6¼ 0, for different initial conditions. To

test the extent to which (4.1) holds in the present case, Fig. 8 plots r3=2min vs t (discrete data), where rmin is the

minimum radius in the neck region. Fig. 8(b) is a closeup of Fig. 8(a). As rmin ! 0, the data are well ap-

proximated by the line shown. This shows that the scaling (4.1) is well satisfied and gives an estimate for

tp ¼ 1:89523: To determine the accuracy of these results, the figure plots the results for

N ¼ 4000; �max ¼ 0:99 (s), N ¼ 2000; �max ¼ 0:99 (�), and N ¼ 4000; �max ¼ 0 (þ) (corresponding to no

local refinement), for those times at which no noise is visible. The fact that all three datasets are practically
indistinguishable gives strong evidence that the results have converged.
( b ) i s a c l o s e u p o f ( a ) .
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Fig. 9. zmin vs ðtp � tÞ2=3, where zmin is the z-coordinate of the point of minimal radius in the upper neck region. The results for

N ; �max ¼ 4000; 0:99 (s), N ; �max ¼ 2000; 0:99 (�), N ; �max ¼ 4000; 0:00 (þ) are shown, and a line that approximates the data as t ! tp.
(b) is a closeup of (a).
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Having thus estimated tp, Fig. 9 plots zmin vs ðtp � tÞ2=3, where zmin is the z-coordinate of the point of

minimal radius in the upper neck region. As before, Fig. 9(b) is a closeup of Fig. 9(a), and all results for

N ¼ 4000; �max ¼ 0:99 (s), N ¼ 2000; �max ¼ 0:99 (�), and N ¼ 4000; �max ¼ 0:0 (þ), are shown. The data

are well approximated by the line shown, giving the estimate z0 ¼ 1:49839.
One can now plot the solution at a sequence of times in self-similar coordinates

r� ¼ r

ðtp � tÞ2=3
; z� ¼ z� z0

ðtp � tÞ2=3
: ð4:2Þ

Fig. 10(a) plots the solution ðr�; z�Þ at the times tp � t indicated by the inset of Fig. 10(b). The values of

tp � t and corresponding values of rmin (see inset) range over 3 and 2 decades, respectively. The figure shows
e sequence of timest2 ½ 1s e t i n ( b ) , f o r



Fig. 11. An, at a sequen¼ 0:99. Timin direction of the arrows shown. Figs. (a–c) plot the same data at different scales.
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a large portion of the cone–crater structure collapsing onto one curve as tp � t ! 0. One characteristic of

this structure is ðr�min; z
�
minÞ, the point of minimum radius. Here,

ðr�min; z
�
minÞ ¼ ð0:453;�1:53Þ: ð4:3Þ

As will be seen later, these values are in good agreement with the ones obtained by LL for different initial

conditions, giving evidence that the structure is independent of the far-field flow. Fig. 10(b) plots the vortex

sheet strength vs. arclength in self-similar coordinates

c� ¼ cðtp � tÞ1=3; s� ¼ s� s0
ðtp � tÞ2=3

; ð4:4Þ

at the same sequence of times indicated in the inset, where s0 is the arclength parameter at the upper point
of minimal radius. The sheet strength collapses onto one curve with minimum value

c�min ¼ �1:38: ð4:5Þ

The apparent self-similar structure ðr�; z�Þ in Fig. 10(a) has often been characterized as having well-

defined angles on each of the cone and crater branches (see, for example, LL). The underlying assumption is

that as t ! tp, the angles on each branch approach a constant as s� ! �1. Another criterion used to

characterize the structure is whether the inflection point on each branch, that is, the point where the

curvature jz changes sign, is contained in the self-similar regime or not. If so, then the angle h attains a local
extremum at some finite value of the self-similar coordinate s�, in the limit as t ! tp. If not, the extremum is
attained at a finite value of the arclength s in the limit as t ! tp.

In order to investigate the extent to which the current results meet these criteria, Fig. 11 plots the self-

similar variables h vs. s� at a sequence of times approaching tp, following [8]. As time increases towards tp,
the curves move in direction of the arrows shown. Fig. 11(a) plots the data at a large scale, for

�106 s� 6 10. These values of s� correspond approximately to the values of r�; z� plotted in Fig. 10(a). The

point of minimal radius corresponds to h ¼ 90�; s� ¼ 0. The cone-side corresponds to s� < 0, the crater-side

corresponds to s� > 0. At the scale shown in Fig. 11(a), it appears that the curves collapse on both sides as

t ! tp, onto one curve that approaches a constant both as s� ! 1 (crater side) and as s� ! �1 (cone side).
However, the closeups in Figs. 11(b) and (c) show a marked difference between the cone- and the crater-

sides. On the cone-side (Fig. 11(b)), the curves indeed appear to collapse to a limiting curve that approaches

a constant angle as s� ! �1 of approximately 110�, in close agreement with the value 109.9� reported by

LL. Furthermore, the limiting curve in Fig. 11(b) contains a local maximum at a finite value of s�,
(a) (b) (c)gle h vs. self-similar arclength s �ce of times t 2 ½ 1:88; 1:89518ffi, for A ¼ 0;N ¼ 4000;ff maxe increases
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corresponding to the inflection point on the cone-side. Thus, the self-similar regime on the cone-side

contains the inflection point and approaches a constant angle as s� ! �1.

The curves on the crater-side (Fig. 11(c)) also contain a local extremum (local minimum) at the corre-
sponding inflection point. However, these curves do not appear to collapse except possibly over a small

portion of the interval shown. In particular, the position of the inflection point, in self-similar coordinates

s�, does not converge as t ! tp, and the angle h does not appear to approach a constant as t ! tp, s� ! 1.

The self-similar regime on the crater-side therefore does not contain the inflection point, and does not

appear to have a well-defined angle associated with it. From Fig. 11(c) it is actually not clear what the

extent of the self-similar regime on the crater-side is, if any.

One may argue that the times plotted in Fig. 11(c) are not sufficiently close to tp to observe

convergence, or that the results are not sufficiently resolved. To address this concern and further
support the claim on the difference between the two branches, Fig. 12 plots the position of the in-

flection points on the cone-side (solid curves) and the crater-side (dashed curves). The position is

defined by the corresponding values of s ¼ sI and s� ¼ s�I . Fig. 12(a) shows that as tp � t ! 0, the self-

similar variable s�I converges to a finite value on the cone-side, but diverges on the crater-side. In

agreement, the distance sI � s0 shown in Fig. 12(b) converges to zero on the cone-side, but converges

to a nonzero value on the crater-side. Both of these plots give evidence that the inflection point on the

crater-side is not in the self-similar regime, in contrast to the one on the cone-side. The results in

Fig. 12 are plotted for various values of N ; �max (see caption). The fact that they remain unchanged
as N ; �max varies gives evidence that they are resolved, and that the conclusions hold under mesh

refinement.

We note that the reasons for the documented differences between the cone- and the crater-side are not yet

fully understood and remain to be investigated.

4.3. Evolution for A 6¼ 0

Fig. 13 plots the solutions for a range of Atwood numbers A 2 ½�0:6; 0:7�, at a time near pinchoff. For
A 6¼ 0, they were computed using N ¼ 2000, �max ¼ 0:995. These cases are more time-consuming to compute

than the case A ¼ 0, in view of the Fredholm integral equation for ct that needs to be solved iteratively at
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Fig. 12. Position of the inflection points on the cone branch (solid curves) and on the crater branch (dashed curves), for A ¼ 0 and

N ;¼ 4000; 0:99 (s), N ;¼ 2000; 0:99 (�), N ; �max ¼ 4000; 0:0 (þ). (a) Self-similar coordinate s�I , (b) arclength coordinate sI � s0, where s0
is the arclength at the point of minimal radius.
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each timestep. To illustrate, the runs with N ¼ 2000, A 6¼ 0 took about 6 days on a 2.2 GHz PC, whereas the

N ¼ 4000, A ¼ 0 run took 5 days on the same machine.

Fig. 13 shows that the shape of both the satellite and the end-bubbles depends significantly on the
Atwood number. For A ¼ �0:6 (Fig. 13(a)), the satellite bubble at pinchoff is long and the end-bubbles are

far apart. Furthermore, the end-bubbles appear to be almost spherical with small crater depth. As A in-

creases, the satellite bubble at pinchoff becomes shorter and smaller and the end-bubbles are closer to each

other. The shape of the end-bubbles becomes more elliptical and the crater depth increases until approx-

imately A ¼ 0:3 (Fig. 13(d)). For larger values of A (Figs. 13(e) and (f)), the crater depth appears to decrease

again, although the end-bubbles remain nonspherical. For reference, increasing values of A corresponds to

increasing outer densities relative to the inner ones.

The local shape near the pinchoff point also depends on A. Fig. 14 plots a closeup of the solution at a
sequence of times near pinchoff. While the behaviour on the cone-side does not appear to vary much with A,
the angles on the crater-side become notably steeper as A increases. For A ¼ 0:6, the angle near the pinchoff
point is quite steep and a bulge forms nearby. For A ¼ 0:7, this bulge has elongated forming a ‘‘tongue’’ of

the heavier outer fluid protruding into the inner fluid. At the last times plotted, a second such tongue

appears. Thus, the flow is not in the self-similar regime yet, although it does seem to enter the self-similar

regime after the development of the second tongue. By computing these flows with N ¼ 1000 and N ¼ 2000,

it was confirmed that the tongues remain unchanged under mesh refinement and are not an artifact of

underresolution.
Structures such as seen here for A ¼ 0:6, 0.7 are also seen in the computations presented by LL. From

those and the present results, it appears that as A increases, the number of tongues increases and the self-

similar regime is reached later, at smaller values of tp � t, after the tongues are established. In practice, the

small scale features associated with the tongues would likely lead to sub-satellites through nonaxisymmetric

instability, suggesting a means to generate a bimodal size distribution of bubbles (or droplets), something

that is difficult to do technologically.



Fig. 14. Closeup of solution for a range of Atwood number A 2 ½�0:6; 0:7�, at the sequence of times indicated in the closeup in Fig. 13:

(a) A ¼ �0:6, (b) A ¼ �0:3, (c) A ¼ 0:0, (d) A ¼ 0:3, (e) A ¼ 0:6 and (f) A ¼ 0:7.
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4.4. Self-similar collapse, A 6¼ 0

To further document the behaviour near pinchoff, Fig. 15 plots the solution in self-similar coordinates at

the sequence of times tp � t indicated in the insets, for A 2 ½�0:6; 0:6�. For each A 6¼ 0, the pinchoff time tp is
obtained in the same way as for A ¼ 0. The values of tp are close to the times plotted in Fig. 13 and will be

recorded in Section 4.5. The case A ¼ 0:7 is excluded here since not enough data is available in the self-

similar regime.
From the figure, it is apparent that the self-similar regime on the cone-side is reached more slowly for

A ¼ 0:3; 0:6 than for smaller values of A. In particular, for A ¼ 0:6, the smallest values of tp � t plotted have

barely entered the self-similar regime, while those same values of tp � t are well within the self-similar re-

gime for smaller values of A. This agrees with the earlier statement that self-similarity is reached later, that

is, for smaller values of tp � t, as A increases. Furthermore, it is apparent in all plots that the self-similar

collapse is approached more slowly on the crater-side (if at all, see earlier remarks) than on the cone-side.

Finally, as already seen in Fig. 14, the cone-side depends less on A than the crater-side.

LL computed the self-similar structure obtained in the limit as t ! tp by solving local equations near
pinchoff in self-similar coordinates, and report the coordinates ðr�min; z

�
minÞ of the point of smallest radius r�.

Since these values depend on the length scale of the problem, Fig. 16(a) compares the quotient z�min=r
�
min

(which does not depend on the length scale used) with the results reported in LL. The figure shows good

agreement of the present values (diamonds) with those of LL (circles), indicating that the self-similar

structure is independent of initial conditions and the far-field flow, as expected. The deviation from LL (less

than 0.5%) is attributed to accuracy errors in the present data.

In order to compare the actual values of r�min, it is necessary to first determine the ratio between the scales

in the present results and the ones by LL. Consider the characteristic timescale



Fig. 15. Solution in self-similar coordinates r�; z�, at the times indicated in the inset. (a) A ¼ �0:6, (b) A ¼ �0:3, (c) A ¼ 0, (d) A ¼ 0:3

and (e) A ¼ 0:6.
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Fig. 16. Position ðr�min; z
�
minÞ of point of minimal radius in self-similar coordinates. The present results (diamonds) are compared to

scaled results by LL (circles). (a) Ratio z�min=r
�
min, and (b) minimal radius r�min;NS and r�min;LLð0:2=ð1� AÞÞ1=3.
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T ¼ L3qav

s

� �1=2

; ð4:6Þ

where s is surface tension and L is a characteristic length scale. From Eq. (4.2), it follows that near pinchoff,

r� scales as ðL=T 2=3Þ ¼ ðqav=sÞ
�1=3

. As a result the scale ratio should equal

r�NS

r�LL
¼ sNS

qav

qav

sLL

� �1=3

¼ sNS

qav

qav

q1

q1

sLL
;

� �1=3

; ð4:7Þ

where subscripts NS and LL denote the values used in this paper and by LL, respectively. Substituting the
identity q1=qav ¼ 1� A and the values sNS=qav ¼ 0:2 and sLL=q1 ¼ 1 used in the respective papers, it follows

that

r�NS ¼ r�LL
0:2

1� A

� �1=3

: ð4:8Þ

Fig. 16(b) plots r�min;NS (diamonds) and r�min;LLð0:2=ð1� AÞÞ1=3 (circles) for a range of values of A, showing
that indeed these quantities agree quite well.

4.5. Satellite bubble volume and pinchoff time

An aspect of pinchoff and satellite bubble formation that one wishes to control in engineering appli-

cations is the size of the satellite bubble. Fig. 13 shows that it depends significantly on the Atwood number

A, or equivalently, on the density ratio across the bubble. Fig. 17(a) plots the satellite bubble volume as a

function of A, showing that it decreases sharply as A increases. While the overall enclosed volume is

constant (and equal to the initial volume) in all cases, the satellite bubble volume decreases from about 50%

to almost 0.5% of the total volume over the range of Atwood numbers shown. As a check on the accuracy

of the computations, we confirmed that the total volume for A ¼ 0:7 is conserved to within 0.1%
throughout the simulation.

The pinchoff time tp also depends significantly on A. Fig. 17(b) plots tp as a function of A, and shows that

as A increases, or, equivalently, the outer density increases relative to the inner one, the pinchoff time

decreases. It decreases by about a factor of 3 over the range of Atwood numbers shown.
-0.8 0.8A
0.0

1.5

V

(a)

–0.8 0.8A
0.0
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t
p
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Fig. 17. (a) Satellite bubble volume V , and (b) pinchoff time tp, as function of Atwood number A.
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5. Summary

Inviscid capillary pinchoff of an initially spherical bubble is computed for a range of Atwood numbers
A 2 ½�0:6; 0:7�, corresponding to outer/inner density ratios q2=q1 2 ½0:25; 5:7�. The numerical method is

based on a formulation in h–sa–~c variables and includes a new method to dynamically redistribute the

computational meshpoints so that they cluster near the pinchoff point. The method is based on prescribing

an evolution equation for sa. Comparison of solutions with and without local refinement, as well as so-

lutions with increasing number of points, shows that this mesh refinement technique yields convergent

results.

The initially spherical vortex sheet pinches in finite time tp at two points on the symmetry axis, separating

the bubble into two symmetric end-bubbles and a satellite bubble. The dynamics near the pinchoff time are
resolved to within times 10�4

6 tp � t6 10�5 for all Atwood numbers considered. The conclusions from the

simulations can be summarized as:

• The shapes of the asymptotic structure as t ! tp appear to be self-similar. Details of the self-similar

cone–crater structure, such as the coordinates of the point of minimum radius and the angles on the

cone-side, agree with values computed by LL from different initial conditions, using a different numerical

method. Furthermore, complex structures that develop near pinchoff for AP 0:6 also agree with results

presented by LL.

• The self-similar shape is reached slower, that is, at smaller times tp � t, for larger values of A > 0. It is
also reached slower on the crater-side than on the cone-side. On the cone-side, the asymptotic self-similar

shape approaches a constant angle as js�j ! 1, and includes the inflection point. The crater does not

appear to approach a constant angle as js�j ! 1 and the self-similar region does not include the inflec-

tion point. The extent to which the crater side is self-similar and the reasons for the observed differences

between the cone- and crater-side remain to be further investigated.

• On a larger scale, it is found that the satellite bubble volume and the pinchoff time depend significantly

on the Atwood number. The satellite bubble volume decreases by a factor of 100 as A increases from

)0.6 to 0.7, while the pinchoff time decreases by a factor of 3.
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Appendix A. Behaviour of jr;s near endpoints

The vortex sheet touches the axis at the two points s ¼ 0 and s ¼ L. Near these points, computing jr;s

introduces large roundoff error since it involves division of small numbers. Here, we show that for s � 0,

jr;s ¼
jz;s

3
þOðs3Þ: ðA:1Þ

Since jz;s can be computed accurately near the endpoints, one can reduce the roundoff error in approxi-

mating jr;s using (A.1). For simplicity, we denote differentiation with respect to arclength by a prime from
here on, 0 ¼ d=ds.
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First, note that

ðr0; z0Þ ¼ ðcos h; sin hÞ; ðr00; z00Þ ¼ ð� sin h; cos hÞh0; ðA:2aÞ
ðjr; jzÞ ¼ ðz0=r; h0Þ ¼ ðsin h=r; h0Þ; ðA:2bÞ
ðj0
r; j

0
zÞ ¼

r0

r
ðjz

�
� jrÞ; h00

�
¼ cos h

rh0 � sin h
r2

; h00
 !

: ðA:2cÞ

Assume that rðsÞ; hðsÞ are sufficiently smooth at the axis (bounded third derivatives is enough for the

present purposes) and use the fact that both functions are odd about s ¼ 0 and that r0ð0Þ ¼ 1, to

obtain Taylor series expansions for j0
r and j0

z. To obtain the series for j0
r first define functions f and g

by

f ðsÞ ¼ rh0 � sin h ¼ s3

3
h000ð0Þ þOðs5Þ; ðA:3aÞ
gðsÞ ¼ r2 ¼ s2 þOðs4Þ: ðA:3bÞ

Then

j0
rðsÞ ¼ cos h

f ðsÞ
gðsÞ ¼ ð1þOðs2ÞÞ s

3
h000ð0Þ

�
þOðs3Þ

�
¼ s

3
h000ð0Þ þOðs3Þ: ðA:4Þ

The series for j0
z is given by,

j0
zðsÞ ¼ h00 ¼ sh000ð0Þ þOðs3Þ: ðA:5Þ

It follows that

j0
rðsÞ ¼ j0

zðsÞ=3þOðs3Þ: ðA:6Þ

Similarly, it holds that for s � L,

j0
rðsÞ ¼ j0

zðsÞ=3þOððL� sÞ3Þ: ðA:7Þ
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